Special Issue on Molecular Cellular Information Mathematics-Differential Incremental Equilibrium Geometry

Submission Deadline: Jan. 1, 2020

This special issue currently is open for paper submission and guest editor application.

Please download to know all details of the Special Issue

Special Issue Flyer (PDF)

  • Special Issue Editor
    Guest Editors play a significant role in a special issue. They maintain the quality of published research and enhance the special issue’s impact. If you would like to be a Guest Editor or recommend a colleague as a Guest Editor of this special issue, please Click here to fulfill the Guest Editor application.
  • Introduction

    The research direction of this paper is to study the interdisciplinary subjects of life science, mathematics and computer science at the molecular level from the life science Molecular Cell Biology. On the basis of mathematical primitive innovation "Differential Incremental Balanced Geometry", the cell modification of normal chromosome mitosis was established at the molecular level, and the normal cell tissue spatial morphology with initial boundary was established. DNA is used to unravel double helix and separate double strands to solve the protein skeleton structure of bi-directional Semi-Reserved replication of cyclic chromosomes in life sciences at the molecular level. Therefore, it establishes and reveals the duplication fork and bidirectional duplication of molecular cell biology model, the internal structure and regularity of cyclic chromosomes bound by cyclic DNA double helix and many proteins.

    Aims and Scope:

    1. Ring chromosomes
    2. Chromosome mitosis
    3. Molecular cytobiology
    4. Spatial folding of protein particles
    5. Cell modification
    6. Bidirectional Semi-Reserved replication

  • Guidelines for Submission

    Manuscripts can be submitted until the expiry of the deadline. Submissions must be previously unpublished and may not be under consideration elsewhere.

    Papers should be formatted according to the guidelines for authors (see: http://www.applmath.org/submission). By submitting your manuscripts to the special issue, you are acknowledging that you accept the rules established for publication of manuscripts, including agreement to pay the Article Processing Charges for the manuscripts. Manuscripts should be submitted electronically through the online manuscript submission system at http://www.sciencepublishinggroup.com/login. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal and will be listed together on the special issue website.

  • Published Papers

    The special issue currently is open for paper submission. Potential authors are humbly requested to submit an electronic copy of their complete manuscript by clicking here.

Browse journals by subject