New Parameter for Defining a Square: Exact Solution to Squaring the Circle; Proving π is Rational
Issue:
Volume 2, Issue 3, June 2014
Pages:
74-78
Received:
19 March 2014
Accepted:
8 May 2014
Published:
30 May 2014
Abstract: Historically, mathematicians sought for a unique relationship between a square and a circle of equal area without much success. The ratio of perimeter of a circle to its diameter is known and given as the symbol π. However, π was deemed IRRATIONAL. By using the concept of a TESSELLATION, that is the tiling of a plane using one or more geometric shapes, called tiles, with no overlaps and no gaps, a square is described for the first time, as an equi-edge juxtaposition of eight identical right isosceles triangles. The usual median of a triangle is consistently identified in each of these triangles and is designated SECONDARY MEDIAN in relation to a square. There are eight Secondary Medians in a square. When the size of the Secondary Median of a square matches the size of the radius of a circle, and the two shapes are placed so that their centers are coincident, it is established that the areas of the two shapes are equal, thereby demonstrating the basis for the exact solution to the ancient geometric construction problem- SQUARING THE CIRCLE, with the consequences that; 1) π is, unambiguously a feature of the area of a square, 2) π is rational, has an exact value of 3.2, from any circle, a square of equal area is constructed in finite steps as well as the converse, 3) a square and an ellipse of equal area can be constructed, 4) π is not a feature limited to circles and associated shapes, as has been historically documented, but is a feature of Euclidian Geometry. Exact value of π means formulae featuring π are unchanged qualitatively, but changes slightly, quantitatively.
Abstract: Historically, mathematicians sought for a unique relationship between a square and a circle of equal area without much success. The ratio of perimeter of a circle to its diameter is known and given as the symbol π. However, π was deemed IRRATIONAL. By using the concept of a TESSELLATION, that is the tiling of a plane using one or more geometric sha...
Show More
A Modified New Homotopy Perturbation Method for Solving Linear Integral Equations – Differential
Aisan Khojasteh,
Mahmoud Paripour
Issue:
Volume 2, Issue 3, June 2014
Pages:
79-84
Received:
11 May 2014
Accepted:
23 May 2014
Published:
10 June 2014
Abstract: Mathematical modeling of real-life problems usually results in functional equations, such as ordinary or partial differential equations, integral and integral-differential equations etc. The theory of integral equation is one of the major topics of applied mathematics. In this paper a new Homotopy Perturbation Method (HPM) is introduced to obtain exact solutions of the systems of integral equations-differential and is provided examples for the accuracy of this method. This paper presents an introduction to new method of HPM, then introduces the system of integral - differential linear equations and also introduces applications and literature. In second section we will introduce categorizations of averaging integral - differential and several methods to solve this kind of achievement. The third section introduces a new method of HPM. Fourth section determines quarter of integral - differential equations by using HPM. Therefore, we provide Conclusion and some examples that illustrate the effectiveness and convenience of the proposed method.
Abstract: Mathematical modeling of real-life problems usually results in functional equations, such as ordinary or partial differential equations, integral and integral-differential equations etc. The theory of integral equation is one of the major topics of applied mathematics. In this paper a new Homotopy Perturbation Method (HPM) is introduced to obtain e...
Show More